首页> 外文OA文献 >Models and complexity results for performance and energy optimization of concurrent streaming applications
【2h】

Models and complexity results for performance and energy optimization of concurrent streaming applications

机译:并发流应用程序的性能和能源优化的模型和复杂度结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the problem of finding optimal mappings for several independent but concurrent workflow applications, in order to optimize performance-related criteria together with energy consumption. Each application consists in a linear chain graph with several stages, and processes successive data sets in pipeline mode, from the first to the last stage. The problem is to decide which processors to enroll, at which speed (or mode) to use them, and which stages they should execute. There is a clear trade-off to reach, since running faster and/or more processors leads to better performance, but energy consumption is then very high. Energy savings can be achieved at the price of a lower performance, by reducing processor speeds or enrolling fewer resources. We study the problem complexity on different target execution platforms, ranking from fully homogeneous platforms to fully heterogeneous ones. We consider three mapping strategies: (i) one-to-one mappings, where a processor is assigned a single stage; (ii) interval mappings, where a processor may process an interval of consecutive stages of the same application; and (iii) general mappings, which are fully arbitrary, i.e., a processor may process stages of several distinct applications. Finally, we compare two different models for the computation of the latency, which is the time elapsed between the beginning and the end of the execution of a given data set: with the Path model, it is computed as the length of the path taken by this data set, while with the Wavefront model, each data set progresses concurrently within a period. For all platform types, all mapping strategies and both latency models, we establish the complexity of several multi-criteria optimization problems, whose objective functions combine period, latency and energy criteria. In particular, we exhibit instances where the problem is NP-hard with concurrent applications, while it can be solved in polynomial time for a single application, and instances whose problem complexity depends upon the latency model.
机译:在本文中,我们研究了为几个独立但并发的工作流应用程序找到最佳映射的问题,以便优化与性能相关的标准以及能耗。每个应用程序都包含一个带有多个阶段的线性链图,并从第一阶段到最后阶段以流水线模式处理连续的数据集。问题在于决定要注册哪些处理器,以哪种速度(或模式)使用它们以及应该执行哪些阶段。有一个明显的权衡取舍,因为更快的运行速度和/或更多的处理器会导致更好的性能,但是能耗非常高。通过降低处理器速度或注册更少的资源,可以以降低性能为代价实现节能。我们研究了不同目标执行平台上的问题复杂性,从完全同类的平台到完全异构的平台进行了排名。我们考虑三种映射策略:(i)一对一映射,其中将处理器分配给单个阶段; (ii)间隔映射,其中处理器可以处理同一应用程序的连续阶段的间隔; (iii)通用映射,它们是完全任意的,即处理器可以处理几个不同应用程序的阶段。最后,我们比较两个不同的模型来计算延迟,这是给定数据集执行开始和结束之间经过的时间:对于Path模型,它被计算为此数据集,而在Wavefront模型中,每个数据集在一个周期内同时进行。对于所有平台类型,所有映射策略和两个延迟模型,我们建立了几个多准则优化问题的复杂性,其目标函数结合了周期,延迟和能耗准则。尤其是,我们展示了在并发应用程序中该问题是NP难题的实例,而对于单个应用程序,它可以在多项式时间内解决,并且其问题复杂度取决于等待时间模型的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号